the Energy to Lead

Pre-combustion Carbon Capture by a Nanoporous, Superhydrophobic Membrane Contactor Process

DE-FE0000646

Howard Meyer and Jim Zhou, Gas Technology Institute Ben Bikson and Yong Ding, PoroGen

> NETL CO₂ Capture Technology Meeting Aug. 26, 2011

Introduction to GTI and PoroGen

gti

 Not-for-profit research company, focus on research, development, and training needs of the natural gas industry, transportation, and energy markets

- Materials technology company commercially manufacturing products from specialty high performance plastic PEEK (poly (ether ether ketone))
- Products ranging from membrane fluid separation filters to heat transfer devices

Overall Budget

- Total Budget: \$1.27MM Federal \$1.0MM, Cost Share \$276K (20%)
- Actual Spending: Federal \$842 K, Cost Share \$182 K (18%)

Performance Period

October 1, 2009 – March 31, 2012

Performance as of July 31, 2011

8 of 10 Milestones Achieved

Participants

- Gas Technology Institute
- PoroGen
- Aker Process Solutions

Project Objectives

Project Objective:

 Develop a practical, cost effective technology for CO₂ separation and capture for precombustion coal-based gasification plants.

Key Developments:

- Highly chemically inert and temperature stable, super-hydrophobic hollow fiber membrane
- Low cost integrated membrane absorber for CO₂ capture
- Energy efficient CO₂ recovery process minimizing hydrogen loss

Technology Goals and Project Status

	Goal	Achievement
Separate and capture of the CO ₂ from IGCC power plants	≥90% CO ₂ capture	98% CO ₂ capture
Increase in the cost of energy services	≤10%	14%
Apply gas/liquid membrane contactor concept while maintaining consistent pressures on both sides of the membrane	Membrane productivity for economic targets (mass transfer coefficient >0.1s ⁻¹)	Mass transfer coefficient:0.2 s ⁻¹

What Is a Membrane Contactor?

High surface area membrane device that facilitates mass transfer

- Liquid on one side, gas on other side of the membrane
- Membrane does not wet out in contact with liquid
- CO₂ dissolved much more in the solvent, whereas H₂ to a much less extent
- Driving force is the difference in partial pressures of CO₂
 PCO₂(g)>PCO₂(l), PCO₂(l) via Henry's Law Constant

Simplified Process Flow Diagram and Process Conditions

Membrane Contactor Has Technical And Economic Advantages Over Conventional Absorbers

Gas-liquid contactor		Volumetric mass transfer coefficient, (sec)-1
Packed column (Countercurrent)	0.1 – 3.5	0.0004 - 0.07
Bubble column (Agitated)	1 – 20	0.003 - 0.04
Spray column	0.1 – 4	0.0007 - 0.075
Membrane contactor	1 – 70	>0.1

Reductions/Savings:

- Capital Cost by 35 40%;
- Operating Costs of 38% 42%;
- •Dry Equipment weight of 32% 37%;
- Operating Equipment weight of 34% 40%;
- •Total Operating weight of 44% 50%;
- •Footprint requirement of 40%.

Data by Aker Process Systems

Contactor Technical And Economic Challenges

- Extraordinary number of modules need – Contactor performance
 - Minimize mass transfer resistance in gas, membrane, and liquid
- Contactor durability Long-term membrane wetting in contact with solvent can affect performance
 - Improve membrane hydrophobicity
- Solids and impurities Coal fines plugging gas flow inside fibers
 - Determine gas and liquid filtration needs

- Contactor scale up
 - Commercial equipment by experience company
 - Linearly scalable test equipment already in modular form
- Solvent Chemistry
 - Commercial solvents used

PEEK Membrane Can Meet Technical Challenges

- PEEK is "best in class" engineering plastic with exceptional thermal, mechanical, and chemical resistance
- Hollow fiber with high bulk porosity (50-80%), asymmetric pore size: 1 to 50 nm, and thus high gas diffusion flux
 - Helium permeance as high as 19,000 GPU
- Super-hydrophobic, non-wetting, ensures independent gas and liquid flow
- Structured hollow fiber membrane module design with high surface area for improved mass transfer

PoroGen has Commercial Technology from Polymer to System

PoroGen Controls Pore Size and Volume, Fiber Diameters, Modify Surface and Flow Dynamics of **Pressure Drop, Packing Density, Tortuosity**

Two types of super-hydrophobic membranes under development

a) Nano-porous PEEK hollow fiber membrane

b) Composite PEEK hollow fiber membrane
Thin layer (0.1 μm) of smaller surface pores

Asymmetric porous structure

Super-hydrophobic surface not wetted by alcohol

Alcohol droplet

Membrane intrinsic CO₂ permeance exceeded initial target commercial performance

More than 30 modules constructed by PoroGen

Performance Test Conditions

- Tested module performance can be linearly scaled to commercial size modules
- Simulated syngas tests in the lab
- Actual gasifier feed from GTI FFTF runs
- Physical solvents Morphysorb[™], Selexol[™], water, and methanol
- Design of experiments test matrix

Membrane Contactor Bench Unit

- •2 inch modules
- •14 gallon/hr solvent flow
- Moisture addition and measurement
- Fully instrumented and computer controlled.

16

0.6 MMscfd N₂/CO₂ mixture 1000 psig, 25 to 75 °C

Typical Performance Data

Total Gas Flow, SLPM	Solvent Rate, L/min	Solvent T,	Gas P, psi	In CO ₂ , mol%	CO ₂ Removal,
-	+	+	500	39.23	98.5
+	-	+	500	41.4	66.0
-	-	+	500	38.0	19.4
+	+	+	500	39.4	41.8
-	-	-	500	38.9	99.3
+	-	-	500	43.9	98.3
+	-	-	500	43.0	97.2

- CO₂ removal greater than 90% demonstrated
- Material balances within 3% for related high pressure testing
- Mass transfer is liquid side controlled. Further optimization of hollow fiber structured packing through computer controlled helical winding is on-going

Membrane module design and scale-up to 8 inch commercial scale

- Design of commercial size, highpressure, syngas CO₂ capture module completed
- Design validated through CFD modeling
- Scaling up from 1 m² to 100 m² (8inch commercial module)
- Production of 8" diameter module on commercial equipment established

Tubesheet CFD stress analysis

Equipment to produce 8-inch modules

Membrane Process Design and Economic Evaluation

- 90% carbon capture, 95.1% pure CO₂, 95.4% pure H₂
- 8-inch-diameter, commercial-scale membrane contactors
- Measured mass transfer coefficient
- Process model based on detailed mass and energy balance and solving detailed transport equation in the liquid phase
- Utilized DOE <u>Cost and Performance Baseline for Fossil</u> <u>Energy Plants</u> (DOE-NETL-2007/1281) Case Number 2 by replacing the CO₂ control system with GTI's membrane contactor technology
- Dollar-Year Reporting Basis: 2007 \$
- Levelized-Cost of CO₂ Transport, Storage & Monitoring: \$4.05 / ton CO₂

Process Flow Substituted Membrane Contactor for Columns

Estimated LCOE

	LCOE (\$/MW)			
Cost	Case 1	Case 2	Membrane Contactor (\$100/m²)	
Capital	\$45.28	\$59.65	\$49.35	
Fixed O&M	\$6.05	\$7.50	\$6.77	
Variable O&M	\$7.51	\$9.35	\$8.45	
Coal	\$19.36	\$22.78	\$20.58	
CO ₂ TS&M	\$0	\$4.36	\$3.89	
Total	\$78.20	\$103.64	\$89.04	
% Increase from Case 1		32.5%	13.9%	

Compare with Project Goal

- 90% CO₂ capture can be achieved with the membrane contactor technology using physical solvent
- LCOE increase of 14% from baseline plant without CO₂ capture compared with a goal of 10% increase.

Plans to Complete Project

 Complete solvent testing with H₂S and improved membranes

Performance and life testing with real gasifier feed

- Test unit built and ready
- Waiting for next gasifier run in early Oct. 2011
- Refine process and economic model
 - Based on gasifer test results

Syngas Test Unit

Outlet Sample 1

Steps After Current Technology Development Project

- Scale-up membrane module production
 - 8-inch to 12/16-inch-diameter modules to improve economics
- Membrane stability, durability, life
- Detailed process and economic modeling using plant data
- Technology implementation timeline after this project

Time	Development	CO ₂ capture, Ton/day	Module diameter, in.	Projected # of modules*
By 2013	2.5 MWe pilot-scale	50	8	5
By 2016	25 MWe demo scale	500	8 or 16	50 or 13
By 2018	550 MWe Commercial	11,000	8 or 16	1,000 or 250

Summary

- Demonstrated the feasibility of using membrane contactor technology for CO₂ capture from high pressure syngas
- 90% CO₂ removal from simulated syngas demonstrated
- Built a basic process and economics model
- Commercial size membrane contactor module designed
- Economic evaluation based on membrane contactor lab testing data indicates a 14% increase in LCOE

Acknowledgement

- Financial support from US Dept. of Energy through National Energy Technology Laboratory under contract DE-FE-0000646 is gratefully acknowledged
- Financial support from the Illinois Department of Commerce and Economic Opportunity through the Office of Coal Development and the Illinois Clean Coal Institute.
- Financial support from Total, Conoco-Philips, Chervon, Saudi Aramco, and PTT is gratefully acknowledged
- DOE program manager Arun Bose for his support

